LOCAL_PROBLEM_VEVPHARDMIXLIN_NOTAN - solves the local problem

Comments

This function solves the local problem, i.e., the viscoelastic-viscoplastic constitutive equations with mixed isotropic and kinematic hardening. Note that it is not required to compute the consistent tangent modulus in the inverse problem.

Note:

epsilon_vp = alpha_1 = alpha_3

gamma = sqrt(3/2) * alpha_2

Input Arguments

Gi (double) - viscoelastic material parameters

gi (double) - viscoelastic material parameters

Ki (double) - viscoelastic material parameters

ki (double) - viscoelastic material parameters

Ginf (double) - viscoelastic material parameter

Kinf (double) - viscoelastic material parameter

H_iso (double) - isotropic hardening parameter

H_kin (double) - kinematic hardening parameter

eta (double) - viscoplastic material parameter

sigma_0 (double) - yield stress

time_inc (double) - time increment

epsilonV_2DPlaneStrain (double) - infinitesimal strain at the current load step in Voigt notation

alphaV_prev (double) - viscoelastic internal variables at the previous load step

epsilonVvp_prev (double) - viscoplastic internal variables at the previous load step

gamma_prev (double) - plastic multiplier at the previous load step

Output Arguments

sigmaV (double) - Cauchy stress at the current load step in Voigt notation

alphaV (double) - viscoelastic internal variables at the current load step

epsilonVvp (double) - viscoplastic internal variables at the current load step

gamma (double) - plastic multiplier at the current load step

viscoelastic (logical) - indicates whether the load step was purely viscoelastic

converged_local (logical) - indicates whether the local problem converged caution: this implementation assumes gi > 0 and ki > 0