LOCAL_PROBLEM_VEVPHARDMIXLIN_NOTAN
- solves the local problem
Comments
This function solves the local problem, i.e., the viscoelastic-viscoplastic constitutive equations with mixed isotropic and kinematic hardening. Note that it is not required to compute the consistent tangent modulus in the inverse problem.
Note:
epsilon_vp = alpha_1 = alpha_3
gamma = sqrt(3/2) * alpha_2
Input Arguments
Gi
(double) - viscoelastic material parameters
gi
(double) - viscoelastic material parameters
Ki
(double) - viscoelastic material parameters
ki
(double) - viscoelastic material parameters
Ginf
(double) - viscoelastic material parameter
Kinf
(double) - viscoelastic material parameter
H_iso
(double) - isotropic hardening parameter
H_kin
(double) - kinematic hardening parameter
eta
(double) - viscoplastic material parameter
sigma_0
(double) - yield stress
time_inc
(double) - time increment
epsilonV_2DPlaneStrain
(double) - infinitesimal strain at the current
load step in Voigt notation
alphaV_prev
(double) - viscoelastic internal variables at the
previous load step
epsilonVvp_prev
(double) - viscoplastic internal variables at the
previous load step
gamma_prev
(double) - plastic multiplier at the previous load step
Output Arguments
sigmaV
(double) - Cauchy stress at the current load step in Voigt
notation
alphaV
(double) - viscoelastic internal variables at the
current load step
epsilonVvp
(double) - viscoplastic internal variables at the
current load step
gamma
(double) - plastic multiplier at the current load step
viscoelastic
(logical) - indicates whether the load step was purely
viscoelastic
converged_local
(logical) - indicates whether the local problem
converged
caution: this implementation assumes gi > 0 and ki > 0