LOCAL_PROBLEM_VEVPHARDMIXLIN - solves the local problem
Comments
This function solves the local problem, i.e., the viscoelastic-viscoplastic constitutive equations with mixed isotropic and kinematic hardening.
Note:
epsilon_vp = alpha_1 = alpha_3
gamma = sqrt(3/2) * alpha_2
Input Arguments
Gi (double) - viscoelastic material parameters
gi (double) - viscoelastic material parameters
Ki (double) - viscoelastic material parameters
ki (double) - viscoelastic material parameters
Ginf (double) - viscoelastic material parameter
Kinf (double) - viscoelastic material parameter
H_iso (double) - isotropic hardening parameter
H_kin (double) - kinematic hardening parameter
eta (double) - viscoplastic material parameter
sigma_0 (double) - yield stress
time_inc (double) - time increment
epsilonV_2DPlaneStrain (double) - infinitesimal strain at the current
load step in Voigt notation
alphaV_prev (double) - viscoelastic internal variables at the
previous load step
epsilonVvp_prev (double) - viscoplastic internal variables at the
previous load step
gamma_prev (double) - plastic multiplier at the previous load step
Output Arguments
sigmaV (double) - Cauchy stress at the current load step in Voigt
notation
CC (double) - consistent tangent modulus
alphaV (double) - viscoelastic internal variables at the
current load step
epsilonVvp (double) - viscoplastic internal variables at the
current load step
gamma (double) - plastic multiplier at the current load step
viscoelastic (logical) - indicates whether the load step was purely
viscoelastic
converged_local (logical) - indicates whether the local problem
converged
caution: this implementation assumes gi > 0 and ki > 0