LOCAL_PROBLEM_PLANESTRESSHARDMIXVAF_NOTAN
- solves the local problem
Comments
This function solves the local problem, i.e., the elastic predictor-plastic corrector return mapping algorithm. Note that it is not required to compute the elasto-plastic consistent tangent modulus in the inverse problem. Assumptions: plane stress, isotropic hardening (Voce), kinematic hardening (Armstrong-Frederick).
Input Arguments
n_NR_local
(double) - maximum number of Newton-Raphson iterations
used for solving the local problem (return mapping algorithm)
tol_NR_local
(double) - stopping tolerance for the Newton-Raphson
iteration used for solving the local problem (return mapping algorithm)
CPlaneStress
(double) - elastic properties (stiffness matrix)
SPlaneStress
(double) - elastic properties (compliance matrix)
theta
(double) - material parameters
H_isotropic
(double) - isotropic hardening parameters
H_kinematic
(double) - kinematic hardening parameters
epsilonV
(double) - infinitesimal strain at the current load step in
Voigt notation (epsilon_11, epsilon_22, 2*epsilon_12)
epsilonVp_prev
(double) - plastic component of the infinitesimal
strain at the previous load step in Voigt notation (epsilon_p_11,
epsilon_p_22, 2*epsilon_p_12, epsilon_p_33)
gamma_prev
(double) - plastic multiplier at the previous load step
sigmaV_back_prev
(double) - back stress at the previous load step
Output Arguments
sigmaV
(double) - Cauchy stress at the current load step in Voigt
notation (sigma_11, sigma_22, sigma_12)
epsilonVp
(double) - plastic component of the infinitesimal
strain at the current load step in Voigt notation (epsilon_p_11,
epsilon_p_22, 2*epsilon_p_12, epsilon_p_33)
gamma
(double) - plastic multiplier at the current load step
sigma_back
(double) - back stress at the current load step
converged_local
(logical) - indicates whether the local problem
converged