LOCAL_PROBLEM_PLANESTRESSHARDMIXVAF_NOTAN - solves the local problem

Comments

This function solves the local problem, i.e., the elastic predictor-plastic corrector return mapping algorithm. Note that it is not required to compute the elasto-plastic consistent tangent modulus in the inverse problem. Assumptions: plane stress, isotropic hardening (Voce), kinematic hardening (Armstrong-Frederick).

Input Arguments

n_NR_local (double) - maximum number of Newton-Raphson iterations used for solving the local problem (return mapping algorithm)

tol_NR_local (double) - stopping tolerance for the Newton-Raphson iteration used for solving the local problem (return mapping algorithm)

CPlaneStress (double) - elastic properties (stiffness matrix)

SPlaneStress (double) - elastic properties (compliance matrix)

theta (double) - material parameters

H_isotropic (double) - isotropic hardening parameters

H_kinematic (double) - kinematic hardening parameters

epsilonV (double) - infinitesimal strain at the current load step in Voigt notation (epsilon_11, epsilon_22, 2*epsilon_12)

epsilonVp_prev (double) - plastic component of the infinitesimal strain at the previous load step in Voigt notation (epsilon_p_11, epsilon_p_22, 2*epsilon_p_12, epsilon_p_33)

gamma_prev (double) - plastic multiplier at the previous load step

sigmaV_back_prev (double) - back stress at the previous load step

Output Arguments

sigmaV (double) - Cauchy stress at the current load step in Voigt notation (sigma_11, sigma_22, sigma_12)

epsilonVp (double) - plastic component of the infinitesimal strain at the current load step in Voigt notation (epsilon_p_11, epsilon_p_22, 2*epsilon_p_12, epsilon_p_33)

gamma (double) - plastic multiplier at the current load step

sigma_back (double) - back stress at the current load step

converged_local (logical) - indicates whether the local problem converged