applyPenaltyLpIteration(datasets,LHS,RHS,c):
Start with a small penalty parameter and solve the Lp-regularized optimization problem, increase the penalty parameter until physical requirements are fulfilled.
Input Arguments
-
datasets -
LHS- left hand side of symmetric linear system -
RHS- right hand side of symmetric linear system -
c- seeconfig
Output Arguments
theta- material parameters
applyPenaltyLpRandomStart(datasets,LHS,RHS,c):
Solve the Lp-regularized optimization problem with random initial guesses.
Input Arguments
-
datasets -
LHS- left hand side of symmetric linear system -
RHS- right hand side of symmetric linear system -
c- seeconfig
Output Arguments
-
theta- material parameters -
at_least_one_converged- information about the convergence
applyPenaltyLpThreshold(datasets,LHS,RHS,theta,c):
Solve the Lp-regularized optimization problem for a given initial guess using fixed-point iteration. During the iterative process, the threshold algorithm is applied.
Input Arguments
-
datasets -
LHS- left hand side of symmetric linear system -
RHS- right hand side of symmetric linear system -
theta- initial guess of material parameters -
c- seeconfig
Output Arguments
-
theta- material parameters -
converged- information about the convergence
checkLocalMinimumLp(datasets,theta,c):
Check if the provided solution is a local minimum of the cost function.
Input Arguments
-
datasets -
theta- material parameters -
c- seeconfig
Output Arguments
- none
computeCostLp(datasets,theta,c):
Compute cost function for L2 minimization with Lp-regularization.
Input Arguments
-
datasets -
theta- material parameters -
c- seeconfig
Output Arguments
-
Cost_weak- cost corresponding to the weak linear momentum balance -
Cost_penaltyLp- cost corresponding to the Lp-regularization -
Cost_total- total cost
saveResultsLp(theta,c,counter_load=None):
Save the results and the chosen parameters in a text file.
Input Arguments
-
theta- material parameters -
c- seeconfig -
counter_load- current load step
Output Arguments
- none