check_data_name_validity(fem_material,noise_level):

filter_raw_data(rng, raw_data, filter_value):

Randomly sub-sampling filter_value degrees of freedom from the data available at all quadrature points in raw_data

Input Arguments

-rng - Random number generator

-raw_data - Contains D (derivatives of feature library) and y (inertia terms and reaction forces) evaluated at all quadrature points

-filter_value - Number of degrees of freedom subsampled from the original data

Output Arguments

  • RawData(A1, b1, A2, b2, dof_x, dof_y) - Object of class RawData which is constructed from subsampled data

get_data(rng, fem_dir, prefix, fem_material, noise_level, loadstep, feature_filter):

predict_energy_path(chain, theta_gt, fem_mat, feature_filter, deformation):

Predicts the energy deformation evolution for predicted and true material models along six deformation paths: i.) uniaxial tension, ii.) uniaxial compression, iii.) simple shear, iv.) biaxial tension, v.) biaxial compression, vi.) pure shear

Input Arguments

-chain - Object of class Chain (see core_spike_slab file)

-theta_gt - The true set of feature coefficients for the benchmark material

-fem_mat - The name of the benchmark material to be tested

-feature_filter - The list of features to retain for constructing the Markov chain. Suppressed features will be highlighted with a red patch in the plot

-deformation - Name of deformation path to be evaluated

Output Arguments

-gamma - Numpy array of different values for the deformation parameter

-energy_mean - Energy corresponding to mean value of theta (feature coefficients) across different members of the Markov chain

-energy_plus - 97.5 percentile energy branch across different members of the Markov chain

-energy_minus - 2.5 percentile energy branch across different members of the Markov chain

-energy_gt - Energy corresponding to the true feature coefficients

-energy - Numpy array containing energy of all chain members at all deformation parameters


process_raw_data(raw_data_set, lambda_r):