features.py
computeFeatures_torch(I1, I2, I3):
Transforms the three principal invariants of the Cauchy-Green deformation tensor into mixed-deviatoric-volumetric invariants and returns them in a concatenated array.
- \(J = \det(\mathbf{F}) = I_3^{1/2}\)
- \(\tilde {I_1} = J^{-2/3}I_1\)
- \(\tilde {I_2} = J^{-4/3}I_2\)
Input Arguments
-
I1
- 1st invariant -
I2
- 2nd invariant -
I3
- 3rd invariant
Output Arguments
x
- \([\tilde {I_1}, \tilde {I_2}, J]\)
getNumberOfFeatures():
Compute number of features.
Input Arguments
- none
Output Arguments
features.shape[1]
- number of features